落到实处负载均衡原理及安装配置详解,liunx系统

2019-08-22 08:55 来源:未知

对于liunx集群,尤其是DR模式,很不容易理解,因他太有点乱和绕了,其实把理理解了,自然就不难了,我把DR最难理解的三个问题,做了标注和说明,这样可以让大家很好的理解。

    负载均衡集群是 load balance 集群的简写,翻译成中文就是负载均衡集群。常用的负载均衡开源软件有nginx、lvs、haproxy,商业的硬件负载均衡设备F5、Netscale。这里主要是学习 LVS 并对其进行了详细的总结记录。

负载均衡集群是 load balance 集群的简写,翻译成中文就是负载均衡集群。常用的负载均衡开源软件有nginx、lvs、haproxy,商业的硬件负载均衡设备F5、Netscale。这里主要是学习 LVS 并对其进行了详细的总结记录。

VS是

一、负载均衡LVS基本介绍

    LB集群的架构和原理很简单,就是当用户的请求过来时,会直接分发到Director Server上,然后它把用户的请求根据设置好的调度算法,智能均衡地分发到后端真正服务器(real server)上。为了避免不同机器上用户请求得到的数据不一样,需要用到了共享存储,这样保证所有用户请求的数据是一样的。

    LVS是 Linux Virtual Server 的简称,也就是Linux虚拟服务器。这是一个由章文嵩博士发起的一个开源项目,它的官方网站是 现在 LVS 已经是 Linux 内核标准的一部分。使用 LVS 可以达到的技术目标是:通过 LVS 达到的负载均衡技术和 Linux 操作系统实现一个高性能高可用的 Linux 服务器集群,它具有良好的可靠性、可扩展性和可操作性。从而以低廉的成本实现最优的性能。LVS 是一个实现负载均衡集群的开源软件项目,LVS架构从逻辑上可分为调度层、Server集群层和共享存储。

 

一、负载均衡LVS基本介绍

LB集群的架构和原理很简单,就是当用户的请求过来时,会直接分发到Director Server上,然后它把用户的请求根据设置好的调度算法,智能均衡地分发到后端真正服务器(real server)上。为了避免不同机器上用户请求得到的数据不一样,需要用到了共享存储,这样保证所有用户请求的数据是一样的。

LVS是 Linux Virtual Server 的简称,也就是Linux虚拟服务器。这是一个由章文嵩博士发起的一个开源项目,它的官方网是  现在 LVS 已经是 Linux 内核标准的一部分。使用 LVS 可以达到的技术目标是:通过 LVS 达到的负载均衡技术和 Linux 操作系统实现一个高性能高可用的 Linux 服务器集群,它具有良好的可靠性、可扩展性和可操作性。从而以低廉的成本实现最优的性能。LVS 是一个实现负载均衡集群的开源软件项目,LVS架构从逻辑上可分为调度层、Server集群层和共享存储。

linux虚拟服务linux内核自带的创始人现在在他淘宝)

二、LVS的基本工作原理

图片 1

1. 当用户向负载均衡调度器(Director Server)发起请求,调度器将请求发往至内核空间
2. PREROUTING链首先会接收到用户请求,判断目标IP确定是本机IP,将数据包发往INPUT链
3. IPVS是工作在INPUT链上的,当用户请求到达INPUT时,IPVS会将用户请求和自己已定义好的集群服务进行比对,如果用户请求的就是定义的集群服务,那么此时IPVS会强行修改数据包里的目标IP地址及端口,并将新的数据包发往POSTROUTING链
4. POSTROUTING链接收数据包后发现目标IP地址刚好是自己的后端服务器,那么此时通过选路,将数据包最终发送给后端的服务器

 

二、LVS的基本工作原理

图片 2

  1. 当用户向负载均衡调度器(Director Server)发起请求,调度器将请求发往至内核空间;

2. PREROUTING链首先会接收到用户请求,判断目标IP确定是本机IP,将数据包发往INPUT链;

3. IPVS是工作在INPUT链上的,当用户请求到达INPUT时,IPVS会将用户请求和自己已定义好的集群服务进行比对,如果用户请求的就是定义的集群服务,那么此时IPVS会强行修改数据包里的目标IP地址及端口,并将新的数据包发往POSTROUTING链;

4. POSTROUTING链接收数据包后发现目标IP地址刚好是自己的后端服务器,那么此时通过选路,将数据包最终发送给后端的服务器。

LVS 有三种模式

三、LVS的组成

LVS 由2部分程序组成,包括 ipvs 和 ipvsadm。

  1. ipvs(ip virtual server):一段代码工作在内核空间,叫ipvs,是真正生效实现调度的代码。
    2. ipvsadm:另外一段是工作在用户空间,叫ipvsadm,负责为ipvs内核框架编写规则,定义谁是集群服务,而谁是后端真实的服务器(Real Server)

 

三、LVS的组成

LVS 由2部分程序组成,包括 ipvs 和 ipvsadm。

1.ipvs(ip virtual server):一段代码工作在内核空间,叫ipvs,是真正生效实现调度的代码。

2. ipvsadm:另外一段是工作在用户空间,叫ipvsadm,负责为ipvs内核框架编写规则,定义谁是集群服务,而谁是后端真实的服务器(Real Server)

NAT

四、LVS相关术语

  1. DS:Director Server。指的是前端负载均衡器节点。
  2. RS:Real Server。后端真实的工作服务器。
  3. VIP:向外部直接面向用户请求,作为用户请求的目标的IP地址。
  4. DIP:Director Server IP,主要用于和内部主机通讯的IP地址。
  5. RIP:Real Server IP,后端服务器的IP地址。
  6. CIP:Client IP,访问客户端的IP地址。

下边是三种工作模式的原理和特点总结。

 

四、LVS相关术语

  1. DS:Director Server。指的是前端负载均衡器节点。
  2. RS:Real Server。后端真实的工作服务器。
  3. VIP:向外部直接面向用户请求,作为用户请求的目标的IP地址。
  4. DIP:Director Server IP,主要用于和内部主机通讯的IP地址。
  5. RIP:Real Server IP,后端服务器的IP地址。
  6. CIP:Client IP,访问客户端的IP地址。

下边是三种工作模式的原理和特点总结。

TUN 隧道模式过渡阶段)

五、LVS/NAT原理和特点

1. 重点理解NAT方式的实现原理和数据包的改变。

图片 3

(a). 当用户请求到达Director Server,此时请求的数据报文会先到内核空间的PREROUTING链。 此时报文的源IP为CIP,目标IP为VIP
(b). PREROUTING检查发现数据包的目标IP是本机,将数据包送至INPUT链
(c). IPVS比对数据包请求的服务是否为集群服务,若是,修改数据包的目标IP地址为后端服务器IP,然后将数据包发至POSTROUTING链。 此时报文的源IP为CIP,目标IP为RIP
(d). POSTROUTING链通过选路,将数据包发送给Real Server
(e). Real Server比对发现目标为自己的IP,开始构建响应报文发回给Director Server。 此时报文的源IP为RIP,目标IP为CIP
(f). Director Server在响应客户端前,此时会将源IP地址修改为自己的VIP地址,然后响应给客户端。 此时报文的源IP为VIP,目标IP为CIP

2. LVS-NAT模型的特性

  • RS应该使用私有地址,RS的网关必须指向DIP
  • DIP和RIP必须在同一个网段内
  • 请求和响应报文都需要经过Director Server,高负载场景中,Director Server易成为性能瓶颈
  • 支持端口映射
  • RS可以使用任意操作系统
  • 缺陷:对Director Server压力会比较大,请求和响应都需经过director server

 

五、LVS/NAT原理和特点

1. 重点理解NAT方式的实现原理和数据包的改变。

图片 4

(a). 当用户请求到达Director Server,此时请求的数据报文会先到内核空间的PREROUTING链。 此时报文的源IP为CIP,目标IP为VIP。
(b). PREROUTING检查发现数据包的目标IP是本机,将数据包送至INPUT链。
(c). IPVS比对数据包请求的服务是否为集群服务,若是,修改数据包的目标IP地址为后端服务器IP,然后将数据包发至POSTROUTING链。 此时报文的源IP为CIP,目标IP为RIP。
(d). POSTROUTING链通过选路,将数据包发送给Real Server。
(e). Real Server比对发现目标为自己的IP,开始构建响应报文发回给Director Server。 此时报文的源IP为RIP,目标IP为CIP。
(f). Director Server在响应客户端前,此时会将源IP地址修改为自己的VIP地址,然后响应给客户端。 此时报文的源IP为VIP,目标IP为CIP。

2. LVS-NAT模型的特性

  • RS应该使用私有地址,RS的网关必须指向DIP

  • DIP和RIP必须在同一个网段内

  • 请求和响应报文都需要经过Director Server,高负载场景中,Director Server易成为性能瓶颈

  • 支持端口映射

  • RS可以使用任意操作系统

  • 缺陷:对Director Server压力会比较大,请求和响应都需经过director server



DR

六、LVS/DR原理和特点

1. 重将请求报文的目标MAC地址设定为挑选出的RS的MAC地址

图片 5 

(a) 当用户请求到达Director Server,此时请求的数据报文会先到内核空间的PREROUTING链。 此时报文的源IP为CIP,目标IP为VIP
(b) PREROUTING检查发现数据包的目标IP是本机,将数据包送至INPUT链
(c) IPVS比对数据包请求的服务是否为集群服务,若是,将请求报文中的源MAC地址修改为DIP的MAC地址,将目标MAC地址修改RIP的MAC地址,然后将数据包发至POSTROUTING链。 此时的源IP和目的IP均未修改,仅修改了源MAC地址为DIP的MAC地址,目标MAC地址为RIP的MAC地址

(d) 由于DS和RS在同一个网络中,所以是通过二层来传输。POSTROUTING链检查目标MAC地址为RIP的MAC地址,那么此时数据包将会发至Real Server。
(e) RS发现请求报文的MAC地址是自己的MAC地址,就接收此报文。处理完成之后,将响应报文通过lo接口传送给eth0网卡然后向外发出。 此时的源IP地址为VIP,目标IP为CIP
(f) 响应报文最终送达至客户端

2. LVS-DR模型的特性

  • 特点1:保证前端路由将目标地址为VIP报文统统发给Director Server,而不是RS
  • RS可以使用私有地址;也可以是公网地址,如果使用公网地址,此时可以通过互联网对RIP进行直接访问
  • RS跟Director Server必须在同一个物理网络中
  • 所有的请求报文经由Director Server,但响应报文必须不能进过Director Server
  • 不支持地址转换,也不支持端口映射
  • RS可以是大多数常见的操作系统
  • RS的网关绝不允许指向DIP(因为我们不允许他经过director)
  • RS上的lo接口配置VIP的IP地址
  • 缺陷:RS和DS必须在同一机房中

3. 特点1的解决方案:

  • 在前端路由器做静态地址路由绑定,将对于VIP的地址仅路由到Director Server
  • 存在问题:用户未必有路由操作权限,因为有可能是运营商提供的,所以这个方法未必实用
  • arptables:在arp的层次上实现在ARP解析时做防火墙规则,过滤RS响应ARP请求。这是由iptables提供的
  • 修改RS上内核参数(arp_ignore和arp_announce)将RS上的VIP配置在lo接口的别名上,并限制其不能响应对VIP地址解析请求。

 

六、LVS/DR原理和特点

1.重将请求报文的目标MAC地址设定为挑选出的RS的MAC地址

图片 6
(a) 当用户请求到达Director Server,此时请求的数据报文会先到内核空间的PREROUTING链。 此时报文的源IP为CIP,目标IP为VIP。
(b) PREROUTING检查发现数据包的目标IP是本机,将数据包送至INPUT链。
(c) IPVS比对数据包请求的服务是否为集群服务,若是,将请求报文中的源MAC地址修改为DIP的MAC地址,将目标MAC地址修改RIP的MAC地址,然后将数据包发至POSTROUTING链。 此时的源IP和目的IP均未修改,仅修改了源MAC地址为DIP的MAC地址,目标MAC地址为RIP的MAC地址。
(d) 由于DS和RS在同一个网络中,所以是通过二层来传输。POSTROUTING链检查目标MAC地址为RIP的MAC地址,那么此时数据包将会发至Real Server。
(e) RS发现请求报文的MAC地址是自己的MAC地址,就接收此报文。处理完成之后,将响应报文通过lo接口传送给eth0网卡然后向外发出。 此时的源IP地址为VIP,目标IP为CIP。
(f) 响应报文最终送达至客户端。

2. LVS-DR模型的特性

  • 特点1:保证前端路由将目标地址为VIP报文统统发给Director Server,而不是RS

  • RS可以使用私有地址;也可以是公网地址,如果使用公网地址,此时可以通过互联网对RIP进行直接访问

  • RS跟Director Server必须在同一个物理网络中

  • 所有的请求报文经由Director Server,但响应报文必须不能进过Director Server

  • 不支持地址转换,也不支持端口映射

  • RS可以是大多数常见的操作系统

  • RS的网关绝不允许指向DIP(因为我们不允许他经过director)

  • RS上的lo接口配置VIP的IP地址

  • 缺陷:RS和DS必须在同一机房中

3. 特点1的解决方案:

  • 在前端路由器做静态地址路由绑定,将对于VIP的地址仅路由到Director Server

  • 存在问题:用户未必有路由操作权限,因为有可能是运营商提供的,所以这个方法未必实用

  • arptables:在arp的层次上实现在ARP解析时做防火墙规则,过滤RS响应ARP请求。这是由iptables提供的

  • 修改RS上内核参数(arp_ignore和arp_announce)将RS上的VIP配置在lo接口的别名上,并限制其不能响应对VIP地址解析请求。

---------------

七、LVS/Tun原理和特点

在原有的IP报文外再次封装多一层IP首部,内部IP首部(源地址为CIP,目标IIP为VIP),外层IP首部(源地址为DIP,目标IP为RIP)

图片 7

(a) 当用户请求到达Director Server,此时请求的数据报文会先到内核空间的PREROUTING链。 此时报文的源IP为CIP,目标IP为VIP 。
(b) PREROUTING检查发现数据包的目标IP是本机,将数据包送至INPUT链
(c) IPVS比对数据包请求的服务是否为集群服务,若是,在请求报文的首部再次封装一层IP报文,封装源IP为为DIP,目标IP为RIP。然后发至POSTROUTING链。 此时源IP为DIP,目标IP为RIP
(d) POSTROUTING链根据最新封装的IP报文,将数据包发至RS(因为在外层封装多了一层IP首部,所以可以理解为此时通过隧道传输)。 此时源IP为DIP,目标IP为RIP
(e) RS接收到报文后发现是自己的IP地址,就将报文接收下来,拆除掉最外层的IP后,会发现里面还有一层IP首部,而且目标是自己的lo接口VIP,那么此时RS开始处理此请求,处理完成之后,通过lo接口送给eth0网卡,然后向外传递。 此时的源IP地址为VIP,目标IP为CIP
(f) 响应报文最终送达至客户端

LVS-Tun模型特性

  • RIP、VIP、DIP全是公网地址
  • RS的网关不会也不可能指向DIP
  • 所有的请求报文经由Director Server,但响应报文必须不能进过Director Server
  • 不支持端口映射
  • RS的系统必须支持隧道

其实企业中最常用的是 DR 实现方式,而 NAT 配置上比较简单和方便,后边实践中会总结 DR 和 NAT 具体使用配置过程。

 

七、LVS/Tun原理和特点

在原有的IP报文外再次封装多一层IP首部,内部IP首部(源地址为CIP,目标IIP为VIP),外层IP首部(源地址为DIP,目标IP为RIP)

图片 8

(a) 当用户请求到达Director Server,此时请求的数据报文会先到内核空间的PREROUTING链。 此时报文的源IP为CIP,目标IP为VIP 。
(b) PREROUTING检查发现数据包的目标IP是本机,将数据包送至INPUT链。
(c) IPVS比对数据包请求的服务是否为集群服务,若是,在请求报文的首部再次封装一层IP报文,封装源IP为为DIP,目标IP为RIP。然后发至POSTROUTING链。 此时源IP为DIP,目标IP为RIP。
(d) POSTROUTING链根据最新封装的IP报文,将数据包发至RS(因为在外层封装多了一层IP首部,所以可以理解为此时通过隧道传输)。 此时源IP为DIP,目标IP为RIP。
(e) RS接收到报文后发现是自己的IP地址,就将报文接收下来,拆除掉最外层的IP后,会发现里面还有一层IP首部,而且目标是自己的lo接口VIP,那么此时RS开始处理此请求,处理完成之后,通过lo接口送给eth0网卡,然后向外传递。 此时的源IP地址为VIP,目标IP为CIP。
(f) 响应报文最终送达至客户端。

LVS-Tun模型特性

  • RIP、VIP、DIP全是公网地址

  • RS的网关不会也不可能指向DIP

  • 所有的请求报文经由Director Server,但响应报文必须不能进过Director Server

  • 不支持端口映射

  • RS的系统必须支持隧道

其实企业中最常用的是 DR 实现方式,而 NAT 配置上比较简单和方便,后边实践中会总结 DR 和 NAT 具体使用配置过程。

图片 9

八、LVS的八种调度算法

1. 轮叫调度 rr
这种算法是最简单的,就是按依次循环的方式将请求调度到不同的服务器上,该算法最大的特点就是简单。轮询算法假设所有的服务器处理请求的能力都是一样的,调度器会将所有的请求平均分配给每个真实服务器,不管后端 RS 配置和处理能力,非常均衡地分发下去。

2. 加权轮叫 wrr
这种算法比 rr 的算法多了一个权重的概念,可以给 RS 设置权重,权重越高,那么分发的请求数越多,权重的取值范围 0 – 100。主要是对rr算法的一种优化和补充, LVS 会考虑每台服务器的性能,并给每台服务器添加要给权值,如果服务器A的权值为1,服务器B的权值为2,则调度到服务器B的请求会是服务器A的2倍。权值越高的服务器,处理的请求越多。

3. 最少链接 lc
这个算法会根据后端 RS 的连接数来决定把请求分发给谁,比如 RS1 连接数比 RS2 连接数少,那么请求就优先发给 RS1 

4. 加权最少链接 wlc
这个算法比 lc 多了一个权重的概念。

5. 基于局部性的最少连接调度算法 lblc
这个算法是请求数据包的目标 IP 地址的一种调度算法,该算法先根据请求的目标 IP 地址寻找最近的该目标 IP 地址所有使用的服务器,如果这台服务器依然可用,并且有能力处理该请求,调度器会尽量选择相同的服务器,否则会继续选择其它可行的服务器

6. 复杂的基于局部性最少的连接算法 lblcr
记录的不是要给目标 IP 与一台服务器之间的连接记录,它会维护一个目标 IP 到一组服务器之间的映射关系,防止单点服务器负载过高。

7. 目标地址散列调度算法 dh
该算法是根据目标 IP 地址通过散列函数将目标 IP 与服务器建立映射关系,出现服务器不可用或负载过高的情况下,发往该目标 IP 的请求会固定发给该服务器。

8. 源地址散列调度算法 sh
与目标地址散列调度算法类似,但它是根据源地址散列算法进行静态分配固定的服务器资源。

 

八、LVS的八种调度算法

1.轮叫调度 rr

这种算法是最简单的,就是按依次循环的方式将请求调度到不同的服务器上,该算法最大的特点就是简单。轮询算法假设所有的服务器处理请求的能力都是一样的,调度器会将所有的请求平均分配给每个真实服务器,不管后端 RS 配置和处理能力,非常均衡地分发下去。

2. 加权轮叫 wrr

这种算法比 rr 的算法多了一个权重的概念,可以给 RS 设置权重,权重越高,那么分发的请求数越多,权重的取值范围 0 – 100。主要是对rr算法的一种优化和补充, LVS 会考虑每台服务器的性能,并给每台服务器添加要给权值,如果服务器A的权值为1,服务器B的权值为2,则调度到服务器B的请求会是服务器A的2倍。权值越高的服务器,处理的请求越多。

3. 最少链接 lc

这个算法会根据后端 RS 的连接数来决定把请求分发给谁,比如 RS1 连接数比 RS2 连接数少,那么请求就优先发给 RS1

4. 加权最少链接 wlc

这个算法比 lc 多了一个权重的概念。

5. 基于局部性的最少连接调度算法 lblc

这个算法是请求数据包的目标 IP 地址的一种调度算法,该算法先根据请求的目标 IP 地址寻找最近的该目标 IP 地址所有使用的服务器,如果这台服务器依然可用,并且有能力处理该请求,调度器会尽量选择相同的服务器,否则会继续选择其它可行的服务器

6. 复杂的基于局部性最少的连接算法 lblcr

记录的不是要给目标 IP 与一台服务器之间的连接记录,它会维护一个目标 IP 到一组服务器之间的映射关系,防止单点服务器负载过高。

7. 目标地址散列调度算法 dh

该算法是根据目标 IP 地址通过散列函数将目标 IP 与服务器建立映射关系,出现服务器不可用或负载过高的情况下,发往该目标 IP 的请求会固定发给该服务器。

8. 源地址散列调度算法 sh

与目标地址散列调度算法类似,但它是根据源地址散列算法进行静态分配固定的服务器资源。

工作模式:

九、实践LVS的NAT模式

1、实验环境

三台服务器,一台作为 director,两台作为 real server,director 有一个外网网卡(172.16.254.200) 和一个内网ip(192.168.0.8),两个 real server 上只有内网 ip (192.168.0.18) 和 (192.168.0.28),并且需要把两个 real server 的内网网关设置为 director 的内网 ip(192.168.0.8)

2、安装和配置

两个 real server 上都安装 nginx 服务
# yum install -y nginx

Director 上安装 ipvsadm
# yum install -y ipvsadm

Director 上编辑 nat 实现脚本

# vim /usr/local/sbin/lvs_nat.sh
# 编辑写入如下内容:
#! /bin/bash
# director服务器上开启路由转发功能:
echo 1 > /proc/sys/net/ipv4/ip_forward
# 关闭 icmp 的重定向
echo 0 > /proc/sys/net/ipv4/conf/all/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/default/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/eth0/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/eth1/send_redirects
# director设置 nat 防火墙
iptables -t nat -F
iptables -t nat -X
iptables -t nat -A POSTROUTING -s 192.168.0.0/24 -j MASQUERADE
# director设置 ipvsadm
IPVSADM='/sbin/ipvsadm'
$IPVSADM -C
$IPVSADM -A -t 172.16.254.200:80 -s wrr
$IPVSADM -a -t 172.16.254.200:80 -r 192.168.0.18:80 -m -w 1
$IPVSADM -a -t 172.16.254.200:80 -r 192.168.0.28:80 -m -w 1

保存后,在 Director 上直接运行这个脚本就可以完成 lvs/nat 的配置

/bin/bash /usr/local/sbin/lvs_nat.sh

查看ipvsadm设置的规则

ipvsadm -ln

3、测试LVS的效果

通过浏览器测试2台机器上的web内容 http://172.16.254.200 。为了区分开,我们可以把 nginx 的默认页修改一下:

在 RS1 上执行
# echo "rs1rs1" >/usr/share/nginx/html/index.html

在 RS2 上执行
# echo "rs2rs2" >/usr/share/nginx/html/index.html

注意,切记一定要在两台 RS 上设置网关的 IP 为 director 的内网 IP。

 

九、实践LVS的NAT模式

1、实验环境

三台服务器,一台作为 director,两台作为 real server,director 有一个外网网卡(192.168.21.250) 和一个内网ip(10.10.172.190),两个 real server 上只有内网 ip (10.10.172.192) 和 (10.10.172.193),并且需要把两个 real server 的内网网关设置为 director 的内网 ip(10.10.172.191)

2、安装和配置

两个 real server 上都安装 nginx 服务
# yum install -y epel-release
# yum install -y nginx
 
Director 上安装 ipvsadm
# yum install -y ipvsadm

Director 上编辑 nat 实现脚本

# vim /data/sh/lvs_nat.sh
# 编辑写入如下内容:
#! /bin/bash
# director服务器上开启路由转发功能:
echo 1 > /proc/sys/net/ipv4/ip_forward
# 关闭 icmp 的重定向
echo 0 > /proc/sys/net/ipv4/conf/all/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/default/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/eth0/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/eth1/send_redirects
# director设置 nat 防火墙
iptables -t nat -F
iptables -t nat -X
iptables -t nat -A POSTROUTING -s 10.10.172.0/24 -j MASQUERADE
# director设置 ipvsadm
IPVSADM='/sbin/ipvsadm'
$IPVSADM -C
$IPVSADM -A -t 192.168.21.250:80 -s wrr
$IPVSADM -a -t 192.168.21.250:80 -r 10.10.172.193:80 -m -w 100
$IPVSADM -a -t 192.168.21.250:80 -r 10.10.172.194:80 -m -w 100

保存后,在 Director 上直接运行这个脚本就可以完成 lvs/nat 的配置

/bin/bash /data/sh/lvs_nat.sh

查看ipvsadm设置的规则

ipvsadm -Ln

3、测试LVS的效果

通过浏览器测试2台机器上的web内容  。为了区分开,我们可以把 nginx 的默认页修改一下:

在 RS1 上执行
# echo "rs1rs1" >/usr/share/nginx/html/index.html
 
在 RS2 上执行
# echo "rs2rs2" >/usr/share/nginx/html/index.html

注意,切记一定要在两台 RS 上设置网关的 IP 为 director 的内网 IP。

一、NAT

十、实践LVS的DR模式

1、实验环境

三台机器:

  • Director节点:  (eth0 192.168.0.8  vip eth0:0 192.168.0.38)
  • Real server1: (eth0 192.168.0.18 vip lo:0 192.168.0.38)
  • Real server2: (eth0 192.168.0.28 vip lo:0 192.168.0.38)

2、安装

两个 real server 上都安装 nginx 服务
# yum install -y nginx

Director 上安装 ipvsadm
# yum install -y ipvsadm

3、Director 上配置脚本

# vim /usr/local/sbin/lvs_dr.sh
#! /bin/bash
echo 1 > /proc/sys/net/ipv4/ip_forward
ipv=/sbin/ipvsadm
vip=192.168.0.38
rs1=192.168.0.18
rs2=192.168.0.28
ifconfig eth0:0 down
ifconfig eth0:0 $vip broadcast $vip netmask 255.255.255.255 up
route add -host $vip dev eth0:0
$ipv -C
$ipv -A -t $vip:80 -s wrr 
$ipv -a -t $vip:80 -r $rs1:80 -g -w 3
$ipv -a -t $vip:80 -r $rs2:80 -g -w 1

执行脚本:

# bash /usr/local/sbin/lvs_dr.sh

4、在2台 rs 上配置脚本:

# vim /usr/local/sbin/lvs_dr_rs.sh
#! /bin/bash
vip=192.168.0.38
ifconfig lo:0 $vip broadcast $vip netmask 255.255.255.255 up
route add -host $vip lo:0
echo "1" >/proc/sys/net/ipv4/conf/lo/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/lo/arp_announce
echo "1" >/proc/sys/net/ipv4/conf/all/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/all/arp_announce

rs 上分别执行脚本:

bash /usr/local/sbin/lvs_dr_rs.sh

5、实验测试

测试方式同上,浏览器访问 http://192.168.0.38

注意:在 DR 模式下,2台 rs 节点的 gateway 不需要设置成 dir 节点的 IP 。

参考链接地址:

 

十、实践LVS的DR模式

1、实验环境

三台机器:

  • Director节点:  (eth0 10.10.172.191  vip eth0:0 10.10.172.250)

  • Real server1: (eth0 10.10.172.192  vip lo:0 10.10.172.250)

  • Real server2: (eth0 10.10.172.193  vip lo:0 10.10.172.250)

2、安装

两个 real server 上都安装 nginx 服务
# yum install -y epel-release
# yum install -y nginx
 
Director 上安装 ipvsadm
# yum install -y ipvsadm

3、Director 上配置脚本

# vim /data/sh/lvs_dr.sh
#! /bin/bash
echo 1 > /proc/sys/net/ipv4/ip_forward
ipv=/sbin/ipvsadm
vip=10.10.172.250
rs1=10.10.172.192
rs2=10.10.172.193
ifconfig eth0:0 down
ifconfig eth0:0 $vip broadcast $vip netmask 255.255.255.255 up
route add -host $vip dev eth0:0
$ipv -C
$ipv -A -t $vip:80 -s wrr
$ipv -a -t $vip:80 -r $rs1:80 -g -w 3
$ipv -a -t $vip:80 -r $rs2:80 -g -w 1

执行脚本:

# bash /data/sh/lvs_dr.sh

4、在2台 rs 上配置脚本:

# vim /data/sh/lvs_dr_rs.sh
#! /bin/bash
vip=10.10.172.250
ifconfig lo:0 $vip broadcast $vip netmask 255.255.255.255 up
route add -host $vip lo:0
echo "1" >/proc/sys/net/ipv4/conf/lo/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/lo/arp_announce
echo "1" >/proc/sys/net/ipv4/conf/all/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/all/arp_announce

rs 上分别执行脚本:

bash /data/sh/lvs_dr_rs.sh

5、实验测试

测试方式同上,浏览器访问 

注意:在 DR 模式下,2台 rs 节点的 gateway 不需要设置成 dir 节点的 IP 。

参考链接地址:

分发器:Director

十一、LVS结合keepalive

LVS可以实现负载均衡,但是不能够进行健康检查,比如一个rs出现故障,LVS 仍然会把请求转发给故障的rs服务器,这样就会导致请求的无效性。keepalive 软件可以进行健康检查,而且能同时实现 LVS 的高可用性,解决 LVS 单点故障的问题,其实 keepalive 就是为 LVS 而生的。

1、实验环境

4台节点

  • Keepalived1 lvs1(Director1):192.168.0.48
  • Keepalived2 lvs2(Director2):192.168.0.58
  • Real server1:192.168.0.18
  • Real server2:192.168.0.28
  • IP: 192.168.0.38

2、安装系统软件

Lvs keepalived的2个节点安装

# yum install ipvsadm keepalived -y

Real server nginx服务的2个节点安装

# yum install epel-release -y
# yum install nginx -y

3、设置配置脚本

Real server节点2台配置脚本:

# vim /usr/local/sbin/lvs_dr_rs.sh
#! /bin/bash
vip=192.168.0.38
ifconfig lo:0 $vip broadcast $vip netmask 255.255.255.255 up
route add -host $vip lo:0
echo "1" >/proc/sys/net/ipv4/conf/lo/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/lo/arp_announce
echo "1" >/proc/sys/net/ipv4/conf/all/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/all/arp_announce

2节点rs 上分别执行脚本:
bash /usr/local/sbin/lvs_dr_rs.sh

keepalived节点配置(2节点):

主节点( MASTER )配置文件
vim /etc/keepalived/keepalived.conf
vrrp_instance VI_1 {
    state MASTER
    interface eth0
    virtual_router_id 51
    priority 100
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        192.168.0.38
    }
}

virtual_server 192.168.0.38 80 {
    delay_loop 6
    lb_algo rr
    lb_kind DR
    persistence_timeout 0
    protocol TCP

    real_server 192.168.0.18 80 {
        weight 1
        TCP_CHECK {
            connect_timeout 10
            nb_get_retry 3
            delay_before_retry 3
            connect_port 80
        }
    }

    real_server 192.168.0.28 80 {
        weight 1
        TCP_CHECK {
            connect_timeout 10
            nb_get_retry 3
            delay_before_retry 3
            connect_port 80
        }
    }
}

从节点( BACKUP )配置文件

拷贝主节点的配置文件keepalived.conf,然后修改如下内容:

state MASTER -> state BACKUP
priority 100 -> priority 90

keepalived的2个节点执行如下命令,开启转发功能:

# echo 1 > /proc/sys/net/ipv4/ip_forward

4、启动keepalive

先主后从分别启动keepalive
service keepalived start

5、验证结果

实验1

手动关闭192.168.0.18节点的nginx,service nginx stop 在客户端上去测试访问 http://192.168.0.38 结果正常,不会出现访问18节点,一直访问的是28节点的内容。

实验2

手动重新开启 192.168.0.18 节点的nginx, service nginx start 在客户端上去测试访问 http://192.168.0.38 结果正常,按照 rr 调度算法访问18节点和28节点。

实验3

测试 keepalived 的HA特性,首先在master上执行命令 ip addr ,可以看到38的vip在master节点上的;这时如果在master上执行 service keepalived stop 命令,这时vip已经不再master上,在slave节点上执行 ip addr 命令可以看到 vip 已经正确漂到slave节点,这时客户端去访问 http://192.168.0.38 访问依然正常,验证了 keepalived的HA特性。

lvs 介绍:

 

十一、LVS结合keepalived

LVS可以实现负载均衡,但是不能够进行健康检查,比如一个rs出现故障,LVS 仍然会把请求转发给故障的rs服务器,这样就会导致请求的无效性。keepalive 软件可以进行健康检查,而且能同时实现 LVS 的高可用性,解决 LVS 单点故障的问题,其实 keepalive 就是为 LVS 而生的。

1、实验环境

4台节点

  • Keepalived1 lvs1(Director1):10.10.172.191

  • Keepalived2 lvs2(Director2):10.10.172.192

  • Real server1:10.10.172.193

  • Real server2:10.10.172.194

  • VIP: 10.10.172.250

2、安装系统软件

Lvs

  • keepalived的2个节点安装

    # yum install ipvsadm keepalived -y

Real server nginx服务的2个节点安装

# yum install epel-release -y
# yum install nginx -y

3、设置配置脚本

Real server节点2台配置脚本:

# vim /data/sh/lvs_dr_rs.sh
#! /bin/bash
vip=10.10.172.250
ifconfig lo:0 $vip broadcast $vip netmask 255.255.255.255 up
route add -host $vip lo:0
echo "1" >/proc/sys/net/ipv4/conf/lo/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/lo/arp_announce
echo "1" >/proc/sys/net/ipv4/conf/all/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/all/arp_announce
 
2节点rs 上分别执行脚本:
bash /data/sh/lvs_dr_rs.sh

keepalived节点配置(2节点):

节点1配置文件内容如下所示:
vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived

global_defs {
   notification_email {
     acassen@firewall.loc
     failover@firewall.loc
     sysadmin@firewall.loc
   }
   notification_email_from Alexandre.Cassen@firewall.loc
   smtp_server 192.168.200.1
   smtp_connect_timeout 30
   router_id LVS_DEVEL
}
vrrp_instance VI_1 {
    state BACKUP
    interface eth0
    virtual_router_id 51
    priority 100
    advert_int 1
    nopreempt   
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        10.10.172.250
    }
}
 
virtual_server 10.10.172.250 80 {
    delay_loop 6
    lb_algo rr
    lb_kind DR
    persistence_timeout 0
    protocol TCP
 
    real_server 10.10.172.193 80 {
        weight 1
        TCP_CHECK {
            connect_timeout 10
            nb_get_retry 3
            delay_before_retry 3
            connect_port 80
        }
    }
 
    real_server 10.10.172.194 80 {
        weight 1
        TCP_CHECK {
            connect_timeout 10
            nb_get_retry 3
            delay_before_retry 3
            connect_port 80
        }
    }
}

节点2配置文件

拷贝主节点的配置文件keepalived.conf,然后修改如下内容:

state BACKUP-> state BACKUP
priority 100 -> priority 90

其实,谁先启动keepalived谁担任MASTER角色。

keepalived的2个节点执行如下命令,开启转发功能:

# echo 1 > /proc/sys/net/ipv4/ip_forward

4、启动keepalived

# service keepalived start;chkconfig keepalived on

5、验证结果

实验1

手动关闭10.10.172.192节点的nginx,service nginx stop 在客户端上去测试访问  结果正常,不会出现访问192节点,一直访问的是193节点的内容。

实验2

手动重新开启 10.10.172.192节点的nginx, service nginx start 在客户端上去测试访问  结果正常,按照 rr 调度算法访问192节点和193节点。

实验3

测试 keepalived 的HA特性,首先在master上执行命令 ip addr ,可以看到38的vip在master节点上的;这时如果在master上执行 service keepalived stop 命令,这时vip已经不再master上,在slave节点上执行 ip addr 命令可以看到 vip 已经正确漂到slave节点,这时客户端去访问  访问依然正常,验证了 keepalived的HA特性。

VIP 虚拟IP 提供服务的IP

DIP 直连服务器的IP

RIP 服务器的IP

CIP 客户端IP

数据包过程

第一步:client——>GW

源ip CIP 目标IP VIP 源mac CIPmac 目标mac up口mac

第二步:

GW——>Director 源ip CIP 目标IP VIP 源mac down口mac 目标mac VIP口mac

第三步:

Director——>Real Server [DNAT] 源ip CIP 目标IP RIP 源mac DIP mac 目标mac RIPmac

第四步:

Real Server——>Director 源ip RIP 目标IP CIP 源mac RIPmac 目标mac DIPmac

第五步:

Director——>GW 源ip VIP 目标IP CIP 源mac VIPmac 目标mac down口mac

第六步:

GW——>Client 源ip VIP 目标IP CIP 源mac up口mac 目标mac CIPmac

三、DR直接路由)

数据包过程

第一步:client——>GW

源ip CIP 目标IP VIP 源mac CIPmac 目标mac up口mac

第二步:

GW——>Director

源ip CIP 目标IP VIP 源mac down口mac 目标mac VIPmac

第三步:

Director——>Real Server

源ip DIP 目标IP RIP 源mac DIP mac 目标mac 广播

源ip RIP 目标ip DIP 源mac RIPmac 目标mac DIPmac

源ip CIP 目标ip VIP 源mac DIPmac 目标mac RIPmac

第四步:

Real Server——>GW

源ip VIP 目标IP CIP 源mac RIPmac 目标mac down口mac

第五步:

GW——>Client

源ip VIP 目标IP CIP 源mac up口mac 目标mac CIPmac

NAT地址转换) 作LB附载均衡的 一个人干活干不过来 在加一个 工作中不会用原理进站数据少出去数据包大服务器承受不了)

分发去器 通过建立策略将接收到的任务分发给服务器

分发到的服务器成为 真实 server

VIP 对外提供服务的 连接外网的

DIP之连IP 连接AB 服务的地址

RIP是AB服务器的IP

虚拟机俩网卡是在硬件上添加network

连接虚拟机 

virt-viewer XU1

SSH IP

virsh console xu1 退出ctrl+右]

如果连不上

在本机上

grep ttys0 /etc/securetty

vim /etc/securetty

添加 ttyS0

grep ttys0 /boot/grub/grub.conf

title Red Hat Enterprise Linux Server (2.6.18-308.el5xen)

root (hd0,0)

kernel /xen.gz-2.6.18-308.el5

module /vmlinuz-2.6.18-308.el5xen ro root=LABEL=/ rhgb quiet console=ttyS0 添加

module /initrd-2.6.18-308.el5xen.img

title Red Hat Enterprise Linux Server (2.6.18-308.el5)

root (hd0,0)

kernel /vmlinuz-2.6.18-308.el5 ro root=LABEL=/ rhgb quiet console=ttyS0

GW电脑上也要打开 地址转换echo 1

在 director电脑上(创建一个虚拟服务)

在内核写策略 需要装 /mnt/cluster/ipvsadm-1.24-

-A 添加一个虚拟接口 轮询

ipvsadm -A -t 1.1.1.1:80 -s rr ------创建了一个工作

伪装)

ipvsadm -a -t 1.1.1.1:80 -r 172.16.1.1 -m ------添加策略

ipvsadm -a -t 1.1.1.1:80 -r 172.16.1.2 -m

ipvasdm -Ln ---查看策略

打开地址转换 echo 1

在本机上设置

在虚拟机上挂载iso

第一个虚拟机 这个文件 映射到这台电脑上 为hdc 以只读的方式

[[email protected] ~]# xm block-attach 5 file://rhel5u8.iso /dev/hdm r

在挂载 iso

ipvasdm -Ln --stats -----显示详细信息

入站流量大于出战流量 原因一个网站进入的是请求出去的是数据

------------------------------------------

DR 直接路由

第一步 原ip cip 目标ip vip 原mac cip mac 目标mac up口

第一个问题 俩个web服务要有VIP

第二个问题 路由喊VIP的时候 只有真正的VIP回应

第三个问题 当分发器上分发数据包的时候必须让dip分发 向外发包第一步查路由表 在路由表里第一条写DIP)

第一个问题原因:为什么俩个web服务器要都要有VIP ,因为: 客户端发送一个数据包给张三,然后恢复的时候是李四恢复的,计算机一看人不对,误认为是李四发错了,

他会一直等张三的数据包到来,等到超时的时候就会断开,为了避免这个问题,所以让俩个服务器端都把张三的名字保存起来,这样,数据包回去的时候看到里面有张三的字眼就会接受了。

所以说 俩个web服务器必须要有VIP。 在自己的电脑上添加领一个IP地址)俩个web服务器上添加VIP在lo:1)

第二个问原因:路由喊VIP的时候 只有真正的VIP回应 第一个问题上面俩个web服务器上有张三的名字了 ,加上真正的张三一共有三个张三 等路由喊张三的时候 会有三个人回答, 这不就乱了马?

所以说我们要让 真正的张三回答 不是真的闭嘴,避免乱套。这就又牵扯到第一个问题了,如果在一个eth1上添加了张三,假如一天插上网线,那么arp一喊eth1必须回应,

所以我们把这个张三设置在lo:1上回环地址的另一个上确保不会插上网线 他回应。设置虚拟服务设置策略 打开俩个内核信息一是 喊真VIP的时候假的不回答, 喊本机的本机回答,喊本机的兄弟IP 本机的IP不回答二是让自己的IP和兄弟IP都接收 兄弟IP也帮你接收)

第三个问题 当分发器上分发数据包的时候为什么必须dip分发

因为分发器和俩个web服务器是在同一个交换机上 VIP和DIP俩个口都可以进出 不非要DIP出 ,但是 假如让VIP出包的话 第二个问题说到让web的VIP提他兄弟接受数据包

他原地址是VIP 接收的地址也是VIP 那么分发器会误认为他给自己发的数据包,这样就会把数据包给自己, 所以我们要选择让DIP发送数据包 ,因为DIP在这个网络里就他一个不会回环。

在 www1和www2设置

ifconfig lo:1 1.1.1.1/32 ---添加这个地址

内核参数的永久设置

vim /etc/sysctl.conf

喊真VIP的时候假的不回答, 喊本机的本机回答,喊本机的兄弟IP 本机的IP不回答

[[email protected] ~]# echo 1 > /proc/sys/net/ipv4/conf/eth0/arp_ignore ---喊VIP的时候他不回答 喊我我回答 喊我兄弟我不回答

[[email protected] ~]# echo 2 /proc/sys/net/ipv4/conf/eth0/arp_announce ----VIP帮正真的IP 接收 给我的我收 我给兄弟我也收

service httpd restart

touch /var/www/html/index.html

echo "11111" > /var/www/html/index.html

在分发器上 让DIP在最上面

ipsadm -C 清空

ifdown eth0

ifdown eth1

ifup eth1

ifup eth0

VIP地址

ipvsadm -A -t 1.1.1.1:80 -s rr

ipvsadm -a -t 1.1.1.1:80 -r 1.1.1.10:80 -g

ipvsadm -a -t 1.1.1.1:80 -r 1.1.1.20:80 -g

ipvasdm -Ln --stats -----显示详细信息

没有出站流量了就成功了

本文出自 “history_xcy” 博客,请务必保留此出处

...

TAG标签:
版权声明:本文由吉利彩票平台注册-吉利彩票平台官方注册-官网推荐发布于首页,转载请注明出处:落到实处负载均衡原理及安装配置详解,liunx系统